New to CAPEC? Start Here
Home > CAPEC List > CAPEC-677: Server Motherboard Compromise (Version 3.9)  

CAPEC-677: Server Motherboard Compromise

Attack Pattern ID: 677
Abstraction: Detailed
View customized information:
+ Description

Malware is inserted in a server motherboard (e.g., in the flash memory) in order to alter server functionality from that intended. The development environment or hardware/software support activity environment is susceptible to an adversary inserting malicious software into hardware components during development or update.

+ Likelihood Of Attack

Low

+ Typical Severity

High

+ Relationships
Section HelpThis table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
NatureTypeIDName
ChildOfStandard Attack PatternStandard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.534Malicious Hardware Update
Section HelpThis table shows the views that this attack pattern belongs to and top level categories within that view.
+ Prerequisites
An adversary with access to hardware/software processes and tools within the development or hardware/software support environment can insert malicious software into hardware components during development or update/maintenance.
+ Consequences
Section HelpThis table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
ScopeImpactLikelihood
Integrity
Execute Unauthorized Commands
+ Mitigations
Purchase IT systems, components and parts from government approved vendors whenever possible.
Establish diversity among suppliers.
Conduct rigorous threat assessments of suppliers.
Require that Bills of Material (BoM) for critical parts and components be certified.
Utilize contract language requiring contractors and subcontractors to flow down to subcontractors and suppliers SCRM and SCRA (Supply Chain Risk Assessment) requirements.
Establish trusted supplier networks.
+ Example Instances

Malware is inserted into the Unified Extensible Firmware Interface (UEFI) software that resides on a flash memory chip soldered to a computer’s motherboard. It is the first thing to turn on when a system is booted and is allowed access to almost every part of the operating system. Hence, the malware will have extensive control over operating system functions and persist after system reboots. [REF-685]

+ Taxonomy Mappings
Section HelpCAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping
Entry IDEntry Name
1195.003Supply Chain Compromise: Compromise Hardware Supply Chain
+ References
[REF-439] John F. Miller. "Supply Chain Attack Framework and Attack Patterns". The MITRE Corporation. 2013. <http://www.mitre.org/sites/default/files/publications/supply-chain-attack-framework-14-0228.pdf>.
[REF-660] Melinda Reed, John F. Miller and Paul Popick. "Supply Chain Attack Patterns: Framework and Catalog". Office of the Assistant Secretary of Defense for Research and Engineering. 2014-08. <https://docplayer.net/13041016-Supply-chain-attack-patterns-framework-and-catalog.html>. URL validated: 2021-06-22.
[REF-685] "Kaspersky Finds Sophisticated UEFI Malware in the Wild". ExtremeTech. 2020-10-05. <https://www.extremetech.com/computing/315860-kaspersky-finds-sophisticated-uefi-malware-in-the-wild>. URL validated: 2021-10-19.
+ Content History
Submissions
Submission DateSubmitterOrganization
2021-10-21
(Version 3.6)
CAPEC Content TeamThe MITRE Corporation
Modifications
Modification DateModifierOrganization
2022-09-29
(Version 3.8)
CAPEC Content TeamThe MITRE Corporation
Updated Taxonomy_Mappings
2023-01-24
(Version 3.9)
CAPEC Content TeamThe MITRE Corporation
Updated @Name
Previous Entry Names
Change DatePrevious Entry Name
2023-01-24
(Version 3.9)
Server Functionality Compromise
More information is available — Please select a different filter.
Page Last Updated or Reviewed: January 24, 2023