An attacker with access to the development environment process of an application-specific integrated circuit (ASIC) for a victim system being developed or maintained after initial deployment can insert malicious functionality into the system for the purpose of disruption or further compromise.
Likelihood Of Attack
Low
Typical Severity
High
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
The attacker must have working knowledge of some if not all of the components involved in the target system as well as the infrastructure and development environment of the manufacturer.
Advanced knowledge about the ASIC installed within the target system.
Skills Required
[Level: High]
Able to develop and manufacture malicious subroutines for an ASIC environment without degradation of existing functions and processes.
Example Instances
A hardware manufacturer periodically updates its ASIC with new features. The attacker, knowing the manufacturer runs email on a system adjacent to the hardware development systems used for ASIC design, sends a phishing email with a malicious attachment to the manufacturer. When viewed, the malicious attachment installs a backdoor that allows the attacker to remotely compromise the adjacent ASIC development system. The attacker is then able to exfiltrate and alter sensitive data on the ASIC system, allowing for future compromise once a new AISC is deployed at the victim location.