An attacker may execute a UDP Fragmentation attack against a target server in an attempt to consume resources such as bandwidth and CPU. IP fragmentation occurs when an IP datagram is larger than the MTU of the route the datagram has to traverse. Typically the attacker will use large UDP packets over 1500 bytes of data which forces fragmentation as ethernet MTU is 1500 bytes. This attack is a variation on a typical UDP flood but it enables more network bandwidth to be consumed with fewer packets. Additionally it has the potential to consume server CPU resources and fill memory buffers associated with the processing and reassembling of fragmented packets.
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Meta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises.
This type of an attack requires the attacker to be able to generate fragmented IP traffic containing crafted data.
Mitigations
This attack may be mitigated by changing default cache sizes to be larger at the OS level. Additionally rules can be enforced to prune the cache with shorter timeouts for packet reassembly as the cache nears capacity.
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (see
parent
)