An adversary may execute an amplification where the size of a response is far greater than that of the request that generates it. The goal of this attack is to use a relatively few resources to create a large amount of traffic against a target server. To execute this attack, an adversary send a request to a 3rd party service, spoofing the source address to be that of the target server. The larger response that is generated by the 3rd party service is then sent to the target server. By sending a large number of initial requests, the adversary can generate a tremendous amount of traffic directed at the target. The greater the discrepancy in size between the initial request and the final payload delivered to the target increased the effectiveness of this attack.
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Meta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises.
This type of an attack requires the existence of a 3rd party service that generates a response that is significantly larger than the request that triggers it.
Mitigations
To mitigate this type of an attack, an organization can attempt to identify the 3rd party services being used in an active attack and blocking them until the attack ends. This can be accomplished by filtering traffic for suspicious message patterns such as a spike in traffic where each response contains the same large block of data. Care should be taken to prevent false positive rates so legitimate traffic isn't blocked.
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
Allocation of Resources Without Limits or Throttling
Taxonomy Mappings
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (also see parent)