New to CAPEC? Start Here
Home > CAPEC List > CAPEC-486: UDP Flood (Version 3.9)  

CAPEC-486: UDP Flood

Attack Pattern ID: 486
Abstraction: Standard
View customized information:
+ Description
An adversary may execute a flooding attack using the UDP protocol with the intent to deny legitimate users access to a service by consuming the available network bandwidth. Additionally, firewalls often open a port for each UDP connection destined for a service with an open UDP port, meaning the firewalls in essence save the connection state thus the high packet nature of a UDP flood can also overwhelm resources allocated to the firewall. UDP attacks can also target services like DNS or VoIP which utilize these protocols. Additionally, due to the session-less nature of the UDP protocol, the source of a packet is easily spoofed making it difficult to find the source of the attack.
+ Relationships
Section HelpThis table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
NatureTypeIDName
ChildOfMeta Attack PatternMeta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises.125Flooding
Section HelpThis table shows the views that this attack pattern belongs to and top level categories within that view.
+ Prerequisites
This type of an attack requires the ability to generate a large amount of UDP traffic to send to the desired port of a target service using UDP.
+ Mitigations
To mitigate this type of an attack, modern firewalls drop UDP traffic destined for closed ports, and unsolicited UDP reply packets. A variety of other countermeasures such as universal reverse path forwarding and remote triggered black holing(RFC3704) along with modifications to BGP like black hole routing and sinkhole routing(RFC3882) help mitigate the spoofed source IP nature of these attacks.
+ Taxonomy Mappings
Section HelpCAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (see parent )
+ Content History
Submissions
Submission DateSubmitterOrganization
2014-06-23
(Version 2.6)
CAPEC Content TeamThe MITRE Corporation
Modifications
Modification DateModifierOrganization
2019-04-04
(Version 3.1)
CAPEC Content TeamThe MITRE Corporation
Updated Related_Weaknesses
2020-07-30
(Version 3.3)
CAPEC Content TeamThe MITRE Corporation
Updated Taxonomy_Mappings
2020-12-17
(Version 3.4)
CAPEC Content TeamThe MITRE Corporation
Updated Taxonomy_Mappings
2022-09-29
(Version 3.8)
CAPEC Content TeamThe MITRE Corporation
Updated Taxonomy_Mappings
More information is available — Please select a different filter.
Page Last Updated or Reviewed: July 31, 2018