An attacker performs flooding at the HTTP level to bring down only a particular web application rather than anything listening on a TCP/IP connection. This denial of service attack requires substantially fewer packets to be sent which makes DoS harder to detect. This is an equivalent of SYN flood in HTTP. The idea is to keep the HTTP session alive indefinitely and then repeat that hundreds of times. This attack targets resource depletion weaknesses in web server software. The web server will wait to attacker's responses on the initiated HTTP sessions while the connection threads are being exhausted.
Typical Severity
Low
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Meta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises.
HTTP protocol is usedWeb server used is vulnerable to denial of service via HTTP flooding
Resources Required
Ability to issues hundreds of HTTP requests
Mitigations
Configuration: Configure web server software to limit the waiting period on opened HTTP sessions
Design: Use load balancing mechanisms
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
Missing Release of Resource after Effective Lifetime
Taxonomy Mappings
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (also see parent)