CAPEC-445: Malicious Logic Insertion into Product Software via Configuration Management Manipulation
Attack Pattern ID: 445
Abstraction: Detailed
View customized information:
Description
An adversary exploits a configuration management system so that malicious logic is inserted into a software products build, update or deployed environment. If an adversary can control the elements included in a product's configuration management for build they can potentially replace, modify or insert code files containing malicious logic. If an adversary can control elements of a product's ongoing operational configuration management baseline they can potentially force clients receiving updates from the system to install insecure software when receiving updates from the server.
Extended Description
Configuration management servers operate on the basis of a client pool, instructing each client on which software to install. In some cases the configuration management server will automate the software installation process. A malicious insider or an adversary who has compromised the server can alter the software baseline that clients must install, allowing the adversary to compromise a large number of satellite machines using the configuration management system. If an adversary can control elements of a product's configuration management for its deployed environment they can potentially alter fundamental security properties of the system based on assumptions that secure configurations are in place. It is also worth noting that this attack can occur during initial product development or throughout a product's sustainment.
Likelihood Of Attack
Medium
Typical Severity
High
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
Access to the configuration management system during deployment or currently deployed at a victim location. This access is often obtained via insider access or by leveraging another attack pattern to gain permissions that the adversary wouldn't normally have.
Consequences
This table specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.
Scope
Impact
Likelihood
Authorization
Execute Unauthorized Commands
Mitigations
Assess software during development and prior to deployment to ensure that it functions as intended and without any malicious functionality.
Leverage anti-virus products to detect and quarantine software with known virus.
Example Instances
In 2016, the policy-based configuration management system Chef was shown to be vulnerable to remote code execution attacks based on its Chef Manage add-on improperly deserializing user-driven cookie data. This allowed unauthenticated users the ability to craft cookie data that executed arbitrary code with the web server's privileges. [REF-706]
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
CWE leads to CAPEC: This entry highlights the rare case where a CAPEC creates an instance of a CWE, as opposed to the usual other way around. At this time, this field only includes mappings to weaknesses that cause the CAPEC, instead of CWEs that could arise due to the CAPEC.
Taxonomy Mappings
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Supply Chain Compromise: Compromise Software Dependencies and Development Tools
References
[REF-379] Jon Boyens, Angela Smith, Nadya Bartol, Kris Winkler, Alex Holbrook
and Matthew Fallon. "Cybersecurity Supply Chain Risk Management Practices for Systems and Organizations (2nd Draft)". National Institute of Standards and Technology (NIST). 2021-10-28.
<https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-161r1-draft2.pdf>. URL validated: 2022-02-16.