An attacker analyzes data returned by an RFID chip and uses this information to duplicate a RFID signal that responds identically to the target chip. In some cases RFID chips are used for building access control, employee identification, or as markers on products being delivered along a supply chain. Some organizations also embed RFID tags inside computer assets to trigger alarms if they are removed from particular rooms, zones, or buildings. Similar to Magnetic strip cards, RFID cards are susceptible to duplication (cloning) and reuse.
Extended Description
RFID (Radio Frequency Identification) are passive devices which consist of an integrated circuit for processing RF signals and an antenna. RFID devices are passive in that they lack an on on-board power source. The majority of RFID chips operate on either the 13.56 MHz or 135 KHz frequency. The chip is powered when a signal is received by the antenna on the chip, powering the chip long enough to send a reply message. An attacker is able to capture and analyze RFID data by either stimulating the chip to respond or being proximate to the chip when it sends a response to a remote transmitter. This allows the attacker to duplicate the signal and conduct attacks such as gaining unauthorized access to a building or impersonating a user's identification.
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Standard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
Physical Security: The term "Physical Security" is used by both CAPEC and CWE, but has different definitions in each corpus. CAPEC uses this term to discuss physical access to buildings and/or specific rooms. In contrast, CWE typically uses this term to discuss physical access to hardware components. CWE does not cover "Physical Security" in the essence described by this CAPEC, so there is no mapping between to the two corpuses at this time.
References
[REF-33] Stuart McClure, Joel Scambray
and George Kurtz. "Hacking Exposed: Network Security Secrets & Solutions". Chapter 9: Hacking Hardware. 6th Edition. McGraw Hill. 2009.
Content History
Submissions
Submission Date
Submitter
Organization
2014-06-23
(Version 2.6)
CAPEC Content Team
The MITRE Corporation
Modifications
Modification Date
Modifier
Organization
2019-09-30
(Version 3.2)
CAPEC Content Team
The MITRE Corporation
Updated @Abstraction, Related_Attack_Patterns
2022-02-22
(Version 3.7)
CAPEC Content Team
The MITRE Corporation
Updated Description, Extended_Description
More information is available — Please select a different filter.