An attacker spoofs a UDDI, ebXML, or similar message in order to impersonate a service provider in an e-business transaction. UDDI, ebXML, and similar standards are used to identify businesses in e-business transactions. Among other things, they identify a particular participant, WSDL information for SOAP transactions, and supported communication protocols, including security protocols. By spoofing one of these messages an attacker could impersonate a legitimate business in a transaction or could manipulate the protocols used between a client and business. This could result in disclosure of sensitive information, loss of message integrity, or even financial fraud.
Typical Severity
Medium
Relationships
This table shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf and ParentOf, and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.
Nature
Type
ID
Name
ChildOf
Meta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises.
The targeted business's UDDI or ebXML information must be served from a location that the attacker can spoof or compromise or the attacker must be able to intercept and modify unsecured UDDI/ebXML messages in transit.
Resources Required
The attacker must be able to force the target user to accept their spoofed UDDI or ebXML message as opposed to the a message associated with a legitimate company. Depending on the follow-on for the attack, the attacker may also need to serve its own web services.
Mitigations
Implementation: Clients should only trust UDDI, ebXML, or similar messages that are verifiably signed by a trusted party.
Related Weaknesses
A Related Weakness relationship associates a weakness with this attack pattern. Each association implies a weakness that must exist for a given attack to be successful. If multiple weaknesses are associated with the attack pattern, then any of the weaknesses (but not necessarily all) may be present for the attack to be successful. Each related weakness is identified by a CWE identifier.
CAPEC mappings to ATT&CK techniques leverage an inheritance model to streamline and minimize direct CAPEC/ATT&CK mappings. Inheritance of a mapping is indicated by text stating that the parent CAPEC has relevant ATT&CK mappings. Note that the ATT&CK Enterprise Framework does not use an inheritance model as part of the mapping to CAPEC.
Relevant to the ATT&CK taxonomy mapping (see
parent
)
Content History
Submissions
Submission Date
Submitter
Organization
2014-06-23
(Version 2.6)
CAPEC Content Team
The MITRE Corporation
Modifications
Modification Date
Modifier
Organization
2019-04-04
(Version 3.1)
CAPEC Content Team
The MITRE Corporation
Updated Related_Attack_Patterns
More information is available — Please select a different filter.