Home > CAPEC List > CAPEC-97: Cryptanalysis (Version 3.0)  

CAPEC-97: Cryptanalysis

Attack Pattern ID: 97
Abstraction: Standard
Status: Draft
Presentation Filter:
+ Description
Cryptanalysis is a process of finding weaknesses in cryptographic algorithms and using these weaknesses to decipher the ciphertext without knowing the secret key (instance deduction). Sometimes the weakness is not in the cryptographic algorithm itself, but rather in how it is applied that makes cryptanalysis successful. An attacker may have other goals as well, such as: Total Break (finding the secret key), Global Deduction (finding a functionally equivalent algorithm for encryption and decryption that does not require knowledge of the secret key), Information Deduction (gaining some information about plaintexts or ciphertexts that was not previously known) and Distinguishing Algorithm (the attacker has the ability to distinguish the output of the encryption (ciphertext) from a random permutation of bits).
+ Likelihood Of Attack

Low

+ Typical Severity

Very High

+ Relationships

The table(s) below shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.

+ Relevant to the view "Mechanisms of Attack" (CAPEC-1000)
NatureTypeIDName
ChildOfMeta Attack PatternMeta Attack Pattern - A meta level attack pattern in CAPEC is a decidedly abstract characterization of a specific methodology or technique used in an attack. A meta attack pattern is often void of a specific technology or implementation and is meant to provide an understanding of a high level approach. A meta level attack pattern is a generalization of related group of standard level attack patterns. Meta level attack patterns are particularly useful for architecture and design level threat modeling exercises.192Protocol Analysis
ParentOfDetailed Attack PatternDetailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal.463Padding Oracle Crypto Attack
ParentOfDetailed Attack PatternDetailed Attack Pattern - A detailed level attack pattern in CAPEC provides a low level of detail, typically leveraging a specific technique and targeting a specific technology, and expresses a complete execution flow. Detailed attack patterns are more specific than meta attack patterns and standard attack patterns and often require a specific protection mechanism to mitigate actual attacks. A detailed level attack pattern often will leverage a number of different standard level attack patterns chained together to accomplish a goal.608Cryptanalysis of Cellular Encryption
CanPrecedeStandard Attack PatternStandard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.20Encryption Brute Forcing
+ Execution Flow
Explore
  1. An attacker discovers a weakness in the cryptographic algorithm or a weakness in how it was applied to a particular chunk of plaintext.

Exploit
  1. An attacker leverages the discovered weakness to decrypt, partially decrypt or infer some information about the contents of the encrypted message. All of that is done without knowing the secret key.

+ Prerequisites
The target software utilizes some sort of cryptographic algorithm.
An underlying weaknesses exists either in the cryptographic algorithm used or in the way that it was applied to a particular chunk of plaintext.
The encryption algorithm is known to the attacker.
An attacker has access to the ciphertext.
+ Skills Required
[Level: High]
Cryptanalysis generally requires a very significant level of understanding of mathematics and computation.
+ Resources Required
Computing resource requirements will vary based on the complexity of a given cryptanalysis technique. Access to the encryption/decryption routines of the algorithm is also required.
+ Consequences

The table below specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Confidentiality
Read Data
+ Mitigations
Use proven cryptographic algorithms with recommended key sizes.

Ensure that the algorithms are used properly. That means:

  • 1. Not rolling out your own crypto; Use proven algorithms and implementations.
  • 2. Choosing initialization vectors with sufficiently random numbers
  • 3. Generating key material using good sources of randomness and avoiding known weak keys
  • 4. Using proven protocols and their implementations.
  • 5. Picking the most appropriate cryptographic algorithm for your usage context and data
+ Example Instances
A very easy to understand example is a cryptanalysis technique called frequency analysis that can be successfully applied to the very basic classic encryption algorithms that performed mono-alphabetic substitution replacing each letter in the plaintext with its predetermined mapping letter from the same alphabet. This was considered an improvement over a more basic technique that would simply shift all of the letters of the plaintext by some constant number of positions and replace the original letters with the new letter with the resultant alphabet position. While mono-alphabetic substitution ciphers are resilient to blind brute force, they can be broken easily with nothing more than a pen and paper. Frequency analysis uses the fact that natural language is not random and mono-alphabetic substitution does not hide the statistical properties of the natural language. So if the letter "E" in an English language occurs with a certain known frequency (about 12.7%), whatever "E" was substituted with to get to the ciphertext, will occur with the similar frequency. Having this frequency information allows the cryptanalyst to quickly determine the substitutions and decipher the ciphertext. Frequency analysis techniques are not applicable to modern ciphers as they are all resilient to it (unless this is a very bad case of a homegrown encryption algorithm). This example is inapplicable to modern cryptographic ciphers but is here to illustrate a rudimentary example of cryptanalysis.
+ References
[REF-556] "Wikipedia". Cryptanalysis. The Wikimedia Foundation, Inc. <http://en.wikipedia.org/wiki/Cryptanalysis>.
+ Content History
Submissions
Submission DateSubmitterOrganization
2014-06-23CAPEC Content TeamThe MITRE Corporation
Modifications
Modification DateModifierOrganization
2015-11-09CAPEC Content TeamThe MITRE Corporation
Updated Related_Attack_Patterns
2018-07-31CAPEC Content TeamThe MITRE Corporation
Updated Attack_Motivation-Consequences, Description, Description Summary, Examples-Instances, Related_Weaknesses

More information is available — Please select a different filter.
Page Last Updated or Reviewed: July 31, 2018