Home > CAPEC List > CAPEC-485: Signature Spoofing by Key Recreation (Version 3.0)  

CAPEC-485: Signature Spoofing by Key Recreation

Attack Pattern ID: 485
Abstraction: Detailed
Status: Draft
Presentation Filter:
+ Description
An attacker obtains an authoritative or reputable signer's private signature key by exploiting a cryptographic weakness in the signature algorithm or pseudorandom number generation and then uses this key to forge signatures from the original signer to mislead a victim into performing actions that benefit the attacker.
+ Likelihood Of Attack


+ Typical Severity


+ Relationships

The table(s) below shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.

+ Relevant to the view "Mechanisms of Attack" (CAPEC-1000)
ChildOfStandard Attack PatternStandard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.473Signature Spoof
+ Prerequisites
An authoritative signer is using a weak method of random number generation or weak signing software that causes key leakage or permits key inference.
An authoritative signer is using a signature algorithm with a direct weakness or with poorly chosen parameters that enable the key to be recovered using signatures from that signer.
+ Skills Required
[Level: High]
Cryptanalysis of signature generation algorithm
[Level: High]
Reverse engineering and cryptanalysis of signature generation algorithm implementation and random number generation
[Level: High]
Ability to create malformed data blobs and know how to present them directly or indirectly to a victim.
+ Mitigations
Ensure cryptographic elements have been sufficiently tested for weaknesses.
+ References
[REF-419] P.J. Leadbitter, D. Page and N.P. Smart. "Attacking DSA Under a Repeated Bits Assumption". http://www.iacr.org/archive/ches2004/31560428/31560428.pdf. 2004-07.
[REF-420] Debian Security. "DSA-1571-1 openssl -- predictable random number generator". http://www.debian.org/security/2008/dsa-1571. 2008-05-13.
+ Content History
Submission DateSubmitterOrganization
2014-06-23CAPEC Content TeamThe MITRE Corporation

More information is available — Please select a different filter.
Page Last Updated or Reviewed: July 31, 2018