Home > CAPEC List > CAPEC-303: TCP Xmas Scan (Version 3.0)  

CAPEC-303: TCP Xmas Scan

Attack Pattern ID: 303
Abstraction: Detailed
Status: Stable
Presentation Filter:
+ Description
An adversary uses a TCP XMAS scan to determine if ports are closed on the target machine. This scan type is accomplished by sending TCP segments with the all flags sent in the packet header, generating packets that are illegal based on RFC 793. The RFC 793 expected behavior is that any TCP segment with an out-of-state Flag sent to an open port is discarded, whereas segments with out-of-state flags sent to closed ports should be handled with a RST in response. This behavior should allow an attacker to scan for closed ports by sending certain types of rule-breaking packets (out of sync or disallowed by the TCB) and detect closed ports via RST packets. In addition to its relative speed when compared with other types of scans, its major advantage is its ability to scan through stateless firewall or ACL filters. Such filters are configured to block access to ports usually by preventing SYN packets, thus stopping any attempt to 'build' a connection. XMAS packets, like out-of-state FIN or ACK packets, tend to pass through such devices undetected. Many operating systems, however, do not implement RFC 793 exactly and for this reason FIN scans do not work as expected against these devices. Some operating systems, like Microsoft Windows, send a RST packet in response to any out-of-sync (or malformed) TCP segments received by a listening socket (rather than dropping the packet via RFC 793), thus preventing the adversary from distinguishing between open and closed ports. XMAS scans are limited by the range of platforms against which they work. Additionally, because open ports are inferred via no responses being generated, one cannot distinguish an open port from a filtered port without further analysis. For instance, XMAS scanning a system protected by a stateful firewall may indicate all ports being open. Because of their obvious rule-breaking nature, XMAS scans are flagged by almost all intrusion prevention or intrusion detection systems.
+ Typical Severity

Low

+ Relationships

The table(s) below shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.

+ Relevant to the view "Mechanisms of Attack" (CAPEC-1000)
NatureTypeIDName
ChildOfStandard Attack PatternStandard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.300Port Scanning
+ Prerequisites
The adversary needs logical access to the target network. XMAS scanning requires the use of raw sockets, and thus cannot be performed from some Windows systems (Windows XP SP 2, for example). On Unix and Linux, raw socket manipulations require root privileges.
+ Resources Required
This attack can be carried out with a network mapper or scanner, or via raw socket programming in a scripting language. Packet injection tools are also useful for this purpose. Depending upon the method used it may be necessary to sniff the network in order to see the response.
+ Consequences

The table below specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Confidentiality
Other
Confidentiality
Access Control
Authorization
Bypass Protection Mechanism
Hide Activities
Availability
Unreliable Execution
+ Mitigations
Employ a robust network defensive posture that includes a managed IDS/IPS.
+ References
[REF-33] Stuart McClure, Joel Scambray and George Kurtz. "Hacking Exposed: Network Security Secrets & Solutions". Chapter 2: Scanning, pg. 56. 6th Edition. McGraw Hill. 2009.
[REF-128] Defense Advanced Research Projects Agency Information Processing Techniques Office and Information Sciences Institute University of Southern California. "RFC793 - Transmission Control Protocol". Defense Advanced Research Projects Agency (DARPA). 1981-09. <http://www.faqs.org/rfcs/rfc793.html>.
[REF-34] Gordon "Fyodor" Lyon. "Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning". Section 5.5 TCP FIN, NULL, XMAS Scans, pg. 107. 3rd "Zero Day" Edition,. Insecure.com LLC, ISBN: 978-0-9799587-1-7. 2008.
[REF-130] Gordon "Fyodor" Lyon. "The Art of Port Scanning". Volume: 7, Issue. 51. Phrack Magazine. 1997. <http://phrack.org/issues/51/11.html>.
+ Content History
Submissions
Submission DateSubmitterOrganization
2014-06-23CAPEC Content TeamThe MITRE Corporation
Modifications
Modification DateModifierOrganization
2018-07-31CAPEC Content TeamThe MITRE Corporation
Updated Attack_Prerequisites, Description, Description Summary, References, Related_Weaknesses, Resources_Required, Solutions_and_Mitigations

More information is available — Please select a different filter.
Page Last Updated or Reviewed: July 31, 2018