Home > CAPEC List > CAPEC-301: TCP Connect Scan (Version 3.0)  

CAPEC-301: TCP Connect Scan

Attack Pattern ID: 301
Abstraction: Detailed
Status: Stable
Presentation Filter:
+ Description
An adversary uses full TCP connection attempts to determine if a port is open on the target system. The scanning process involves completing a 'three-way handshake' with a remote port, and reports the port as closed if the full handshake cannot be established. An advantage of TCP connect scanning is that it works against any TCP/IP stack. RFC 793 defines how TCP connections are established and torn down. TCP connect scanning commonly involves establishing a full connection, and then subsequently tearing it down, and therefore involves sending a significant number of packets to each port that is scanned. Compared to other types of scans, a TCP Connect scan is slow and methodical. This type of scanning causes considerable noise in system logs and can be spotted by IDS/IPS systems. TCP Connect scanning can detect when a port is open by completing the three-way handshake, but it cannot distinguish a port that is unfiltered with no service running on it from a port that is filtered by a firewall but contains an active service. Due to the significant volume of packets exchanged per port, TCP connect scanning can become very time consuming (performing a full TCP connect scan against a host can take multiple days). Generally, it is not used as a method for performing a comprehensive port scan, but is reserved for checking a short list of common ports.
+ Typical Severity

Low

+ Relationships

The table(s) below shows the other attack patterns and high level categories that are related to this attack pattern. These relationships are defined as ChildOf, ParentOf, MemberOf and give insight to similar items that may exist at higher and lower levels of abstraction. In addition, relationships such as CanFollow, PeerOf, and CanAlsoBe are defined to show similar attack patterns that the user may want to explore.

+ Relevant to the view "Mechanisms of Attack" (CAPEC-1000)
NatureTypeIDName
ChildOfStandard Attack PatternStandard Attack Pattern - A standard level attack pattern in CAPEC is focused on a specific methodology or technique used in an attack. It is often seen as a singular piece of a fully executed attack. A standard attack pattern is meant to provide sufficient details to understand the specific technique and how it attempts to accomplish a desired goal. A standard level attack pattern is a specific type of a more abstract meta level attack pattern.300Port Scanning
+ Prerequisites
The adversary requires logical access to the target network. The TCP connect Scan requires the ability to connect to an available port and complete a 'three-way-handshake' This scanning technique does not require any special privileges in order to perform. This type of scan works against all TCP/IP stack implementations.
+ Resources Required
The adversary can leverage a network mapper or scanner, or perform this attack via routine socket programming in a scripting language. Packet injection tools are also useful for this purpose. Depending upon the method used it may be necessary to sniff the network to see the response.
+ Consequences

The table below specifies different individual consequences associated with the attack pattern. The Scope identifies the security property that is violated, while the Impact describes the negative technical impact that arises if an adversary succeeds in their attack. The Likelihood provides information about how likely the specific consequence is expected to be seen relative to the other consequences in the list. For example, there may be high likelihood that a pattern will be used to achieve a certain impact, but a low likelihood that it will be exploited to achieve a different impact.

ScopeImpactLikelihood
Confidentiality
Read Data
+ Mitigations
Employ a robust network defense posture that includes an IDS/IPS system.
+ References
[REF-33] Stuart McClure, Joel Scambray and George Kurtz. "Hacking Exposed: Network Security Secrets & Solutions". Chapter 2: Scanning, pg. 54. 6th Edition. McGraw Hill. 2009.
[REF-128] Defense Advanced Research Projects Agency Information Processing Techniques Office and Information Sciences Institute University of Southern California. "RFC793 - Transmission Control Protocol". Defense Advanced Research Projects Agency (DARPA). 1981-09. <http://www.faqs.org/rfcs/rfc793.html>.
[REF-34] Gordon "Fyodor" Lyon. "Nmap Network Scanning: The Official Nmap Project Guide to Network Discovery and Security Scanning". Section 5.3 TCP Connect Scanning, pg. 100. 3rd "Zero Day" Edition,. Insecure.com LLC, ISBN: 978-0-9799587-1-7. 2008.
[REF-130] Gordon "Fyodor" Lyon. "The Art of Port Scanning". Volume: 7, Issue. 51. Phrack Magazine. 1997. <http://phrack.org/issues/51/11.html>.
+ Content History
Submissions
Submission DateSubmitterOrganization
2014-06-23CAPEC Content TeamThe MITRE Corporation
Modifications
Modification DateModifierOrganization
2018-07-31CAPEC Content TeamThe MITRE Corporation
Updated Attack_Prerequisites, Description, Description Summary, References, Related_Weaknesses, Resources_Required, Solutions_and_Mitigations

More information is available — Please select a different filter.
Page Last Updated or Reviewed: July 31, 2018